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Origin of banded patterns in natural sphalerite

Ivan L’Heureux
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

~Received 11 February 2000!

Mississippi Valley type~MVT ! sphalerite is a zinc ore mineral~zinc sulfide! found in many sedimentary
basins around the world. Its texture is described as a polycrystalline aggregate which results from the precipi-
tation of metal-rich brines in a carbonate host rock. Typically, it exhibits a spatial pattern characterized by an
alternation of colored bands with a length scale on the order of 0.1 mm. In our samples, the color of the bands
correlates with the local iron composition. In order to understand the origin of banded patterns in MVT
sphalerite, we propose here an extension of the competitive growth mechanism often used to model periodic
precipitation patterns. In our model, precipitation from interacting brines, growth and dissolution of crystallite
radius, and ripening are taken into account. As in all postnucleation models, the nucleation process is ne-
glected. It is shown that our model may indeed generate patterns that are qualitatively compatible with the
observed ones. This constitutes an example of self-organization in a geochemical system.

PACS number~s!: 81.10.Aj, 05.45.2a, 91.65.Rg, 47.54.1r
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I. INTRODUCTION

It has been known for a long time that all naturally grow
minerals do not have a uniform chemical composition. Ma
of them exhibit complex growth patterns, such as oscillat
zoning. In oscillatory-zoned single crystals, the chemi
composition varies more or less regularly from the core
the mineral to its rim. The length scales over which the p
tern occurs range from tens of nanometers to several ten
micrometers. Perhaps the best known example of such c
positional pattern is plagioclase feldspar, a mineral co
monly found in igneous rocks@1#. In fact, oscillatory zoning
has been observed in all classes of minerals@2# and in vari-
ous environments such as magmatic melts and aqueou
lutions.

Another type of oscillatory growth pattern results in t
formation of bands of different colors, such as those
served in agates. Such a color banding is commonly foun
sphalerite~ZnS! of the so-called Mississippi Valley typ
~MVT ! variety ~Fig. 1!. This mineral is found in sedimentar
basins all over the world and constitutes an economic
important source of zinc. It is typified by the deposits of t
Tri-State area~Tennessee, Missouri, Arkansas! of the United
States. MVT sphalerite precipitates from low-temperat
~50–100 °C! hydrothermal fluids within a carbonate ho
rock. The precipitation occurs in breccia~coarse-grained
rock with angular fragments!, solution channels, or othe
voids at shallow depths.

Because of the geological implications, it is important
obtain as much information as possible on the formation c
ditions of these oscillatory-zoned systems. Concurrently w
experimental synthesis~see, e.g.,@3#!, modeling of the
growth processes allows an understanding of these co
tions. Realistic models of oscillatory zoning must take in
consideration the various nonlinear feedbacks that couple
dynamical variables~see, e.g.,@4#!. The patterns may resu
from deterministic@2# or stochastic@5# changes in the exter
nal parameters, or from self-organizing internal proces
PRE 621063-651X/2000/62~3!/3234~12!/$15.00
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~see, e.g.,@6,7#!, and more generally from a combination o
both. The goal of this paper is to propose a phenomenol
cal model for the formation of bands in MVT sphalerite.

Bands in MVT sphalerite are characterized by a series
alternating zones of white, yellow, brown, orange, or bla
layers with length scales on the order of 0.1–1 mm. In c
trast to oscillatory zoning in a single mineral, the bands
sults from the aggregation of many crystallites. The lo
axes of these crystallites are oriented in a direction norma
the banding@8,9#. Previous work@9# has found that the colo
of the bands correlates with the iron content: the higher
ratio of Fe to (Zn1Fe), the darker the band. Analyses
samples@9# originating from Pine Point, Northwest Territo
ries ~Canada!, determined that the iron and zinc conten
vary, respectively, from 1.9 and 64.2 wt % for light bands,
6.0 and 61.2 wt % for dark bands. These numbers corresp
to a molar fraction of FeS to (FeS1ZnS) varying from 3%
for light bands to 10% for dark bands.

Two categories of descriptive models have been propo
to explain the general conditions in which MVT depositio
occurs. In the first class~‘‘non mixing’’ models! @10,11#, a
low-pH brine transports the metals and reduced sulfur to
deposition site. Precipitation may then be caused by sud
changes in the environment~changes inpH, temperature, or
dilution!. In the second class of model~‘‘mixing’’ !, a metal-
bearing brine is transported to the deposition site and re
with a H2S-rich brine@11–13#, resulting in a precipitation
event that is possibly far from equilibrium. In general, a co
sideration of geological arguments and chemical reac
path modeling seem to favor the second class of model@13#.
The pattern-formation model described in this paper is
fined in the framework of mixing models.

We will base our model of banding pattern dynamics
sphalerite on the concept of Liesegang ring formation. I
typical Liesegang experiment@14#, a salt solutionA reacts in
an aqueous gel with another saltB and forms a productCaq.
Under certain conditions, this product precipitates and for
a series of rings or bandsCs :
3234 ©2000 The American Physical Society
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A1B→Caq↔Cs .

This type of pattern formation is relevant to many geologi
systems@4,15#.

Two classes of models are usually invoked to model
formation of Liesegang bands. In prenucleation models@16#,
the feedback mechanism between nucleation kinetics of
cipitate particles and diffusional transport of the product
solution generates a regular banding pattern, which typic
obeys simple scaling laws@17#. In postnucleation models
such as the competitive growth model~CGM! @18#, one as-
sumes that the precipitate nucleation phase is terminated
that the density of nuclei is constant. A feedback betwe
precipitate growth, diffusion of the product in solution, a
surface tension effects~ripening! then produces comple
banding patterns. Consider, for example, a single-compo
Liesegang experiment in an initially homogeneous syst
Assume the existence of a small localized increase in c
tallite radius. From the Gibbs-Thomson relation, this gen
ates a local decrease in the equilibrium concentration in
solution. A net mass transport toward the perturbation is

FIG. 1. Microphotograph in transmitted light of a thin section
MVT, sphalerite showing banding, characterized by an alterna
of dark and light zones. The concentric bands form crystallite
gregates that emanate from centers of growth. The black filam
are branching galena~PbS! crystals, a mineral often associated wi
sphalerite. The sample originates from the Polaris mine, Northw
Territories~Canada!. The vertical bar in the upper right corner co
responds to 1 mm.
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duced by diffusion, which increases the crystallite size f
ther. But as the crystallite radius increases, the crystall
adjacent to the initial perturbation will dissolve through ri
ening, thus resulting in an increase of the equilibrium co
centration in the zone close to the perturbation. This in t
causes a net mass flux away from that zone, which indu
growth of the crystallite further away. The cycle can then
repeated further along the system. This mechanism has th
fore the potential to generate banding patterns.

In this paper, we generalize the model of Liesegang r
formation to the coprecipitation of a binary solid solutio
constituted by two compounds~FeS and ZnS!. For simplic-
ity, we describe the precipitation dynamics in the framewo
of postnucleation models. A version of the CGM that can
applied to two-precipitate systems has already been prop
in Ref. @19#. In that version, however, the two precipitate
form separate crystallites, each of well-defined compositi
Our model allows for mixing of the two species in the pr
cipitate. It is not the goal of this study to systematica
investigate the effects of varying the parameters, but rathe
show that realistic banding patterns may be generated b
simple mixing model.

The paper is organized as follows. In Sec. II, the ba
equations defining the growth model are introduced. In or
to relate the composition of iron in the crystallite to the co
centrations in the solution, we introduce a phenomenolog
partitioning coefficient in the standard way. A dimensionle
formulation is then presented. In Sec. III, we present a lin
stability analysis on the autonomous version of the mode
is seen that, in some conditions, the system is intrinsic
unstable to inhomogeneous perturbations and that no cha
teristic length scale can be defined at the linear level of
scription. In Sec. IV, we briefly describe the numeric
method and present the results for two situations: one
which the crystallites radius is initially constant~except for a
local perturbation! and one in which it is random. Conclud
ing statements are presented in Sec. V. Two appendices c
plete the presentation.

II. MODEL

We reduce the model to one spatial dimension cho
along a direction normal to a typical band. This is expec
to be a valid approximation in the common cases where
radii of curvature of the bands are large compared to
band thickness.

In the context of mixing models, we assume that an infl
of ~Fe-Zn!-rich brine flows into a reservoir~the porous host
rock! and reacts locally with a H2S-rich brine to produce
iron-bearing sphalerite in the form of a crystallite aggrega
We choose the origin of the spatial coordinatex at the initial
reaction front where both brines are mixed. The reservoi
defined forx.0. For example, referring to Fig. 1, the brin
could be injected from a direction out of the plane of t
figure in the clear area near the center of the banded ag
gate. In this case, thex axis could correspond to a radia
direction normal to the bands in the plane of the figure. T
simplest reaction scheme is

n
-
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3236 PRE 62IVAN L’HEUREUX
Fe211H2S ——→
k1

FeSaq12H1,

ZnCl21H2S ——→
k2

ZnSaq12H12Cl2,

mZnSaq1nFeSaq↔~ZnmFen ,Sm1n!, ~1!

where k1 and k2 are forward rate constants and the th
reaction describes the coprecipitation of metal sulfide spe
as crystallites. Following Ref.@20#, we assume that the Zn i
transported in the first brine as a chloride complex. At
low temperatures considered, a similar complexing of iron
unlikely @20#.

A. Basic equations

We choose the origin of the spatial coordinatex at the
initial reaction front where both brines are mixed. The res
voir is defined forx.0. Let Z(x,t) andF(x,t) be the ZnCl2
and Fe21 concentration in the solution~moles per fluid vol-
ume!, respectively. We introduce the porosityf of the me-
dium, which is defined as the fraction of the rock volum
occupied by fluid-filled pores. We assume that the change
the medium porosity due to the precipitation or dissolution
sphalerite are negligible. We also defineV as the velocity of
the advecting fluid~assumed constant!, andDZ,F as the dif-
fusion coefficients of ZnCl2 and Fe, respectively. Witht de-
noting time, the rate equations forF andZ are

f
]F

]t
5fDF

]2F

]x2 2fV
]F

]x
2k1fF,

f
]Z

]t
5fDZ

]2Z

]x2 2fV
]Z

]x
2k1fZ. ~2!

This set of equations is linear and can be explicitly solv
with appropriate boundary and initial conditions. We use

F~0,t !5F0 , Z~0,t !5Z0 ,

F~`,t !5Z~`,t !50,

F~x,0!5Z~x,0!50, xÞ0. ~3!

Here,F0 andZ0 are the corresponding concentrations in t
input brine. The solution of Eq.~2! then reads

F

F0
5expS xV

2DF
~12l! D1

1

2
expS xV

2DF
D FexpS xVl

2DF
D

3erfcS VlAt/DF

2
1

x

2ADFt
D 2expS 2

xVl

2DF
D

3erfcS VlAt/DF

2
2

x

2ADFt
D G , ~4!

where

l[S 11
4k1DF

V2 D 1/2

. ~5!
es

e
s

r-

in
f

d

A similar expression forZ(x,t) is obtained by substituting
Z0 for F0 ,k2 for k1 , andDZ for DF .

We now model the precipitation dynamics. In the spirit
the CGM, we assume that the crystallites are approxima
spherical with an effective radiusr (x,t) and locally mono-
disperse, so thatr is a function of the crystallite positionx
and of timet. Let B(x,t) andC(x,t) denote the concentra
tion ~moles per fluid volume! of FeS and ZnS in solution
respectively,D1,2 the respective diffusion coefficients, an
U1,2 the respective precipitation rates~moles precipitated pe
unit time per unit rock volume!. Then

f
]B

]t
5fD1

]2B

]x2 2fV
]B

]x
1k1fF2U1 ,

f
]C

]t
5fD2

]2C

]x2 2fV
]C

]x
1k2fZ2U2 . ~6!

In the postnucleation regime, the precipitation rates are gi
by

U15
]

]t S 4p

3
rNr3pD ,

U25
]

]t S 4p

3
rNr3~12p! D . ~7!

Here,r is the average solid molar density,N ~assumed con-
stant! is the nuclei density~i.e., the number of precipitated
nuclei per unit rock volume!, andp(x,t) is the composition
~mole fraction! of FeS in the sphalerite crystallite aggrega

It is this compositionp that correlates with the observe
band color and is the main variable of interest. It is possi
to relatep to the other dynamical variables by assuming th
the mole number of each component precipitated in the
gregate is proportional to its accretion velocity@4,7,21#.
However, since this relation breaks down close to equi
rium when the growth velocities may vanish, we propo
instead a simple relation betweenp and the concentration o
the components in solution. We introduce the partitioni
coefficientsK1 andK2 by the standard definition:

n1
s~x,t !5K1B~x,t !, n2

s~x,t !5K2C~x,t !, ~8!

where ni
s is the concentration of FeS (i 51) and ZnS (i

52) in the solid aggregate at positionx and timet. As long
as a precipitate is formed~i.e., r .0!, the compositionp is

p5n1
s/~n1

s1n2
s!5KB/~KB1C!, ~9!

where K5K1 /K2 is treated as a phenomenological coef
cient. Physically, Eq.~9! indicates that the local compositio
of FeS in the crystallite is proportional to the probability
finding FeS in solution at that position.

Assuming interface-controlled kinetics, the accretion v
locity of FeS into the solid aggregate,V1 , may be written for
a dilute solution as~see Appendix A!

V15b1@B2C1
0~r !#. ~10!

Hereb1 is a microscopic kinetic coefficient andC1
0(r ) is the

concentration of FeS in solution at equilibrium with a cry
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PRE 62 3237ORIGIN OF BANDED PATTERNS IN NATURAL SPHALERITE
tallite of radiusr @22#. A similar expression can be writte
for the accretion velocityV2 of ZnS by introducing the ki-
netic coefficientb2 and the equilibrium concentration o
ZnS,C2

0(r ):

V25b2@C2C2
0~r !#. ~11!

The overall growth of the crystallite can be expressed as
sum of the accretion velocities~see Appendix A!:

]r

]t
5V11V2 . ~12!

Finally, the crystallite radius dependence of the equil
rium concentrations is found from the Gibbs-Thomson re
tion:

Ci
05Ci

` expS 2s~r !y i

kBTr D , i 51,2, ~13!

whereCi
` is the equilibrium concentration of FeS (i 51) or

ZnS (i 52) in the solution in contact with a flat crystallite,y i
is the molecular volume of FeS (i 51) or ZnS (i 52) in the
precipitate,T is temperature,kB is Boltzmann’s constant, an
s(r ) is the effective surface tension between the crysta
and the solution. Note that to a good approximationy1>y2
>y2 . In principle, the effective surface tension depends
the compositionp of the crystal. Application of Butler’s
equation@23# to a binary system leads to the following a
proximate expression:

exp~sa/kBT!5p exp~s1a/kBT!1~12p!exp~s2a/kBT!,

~14!

where a is the area of the molecular unit building up th
crystallite ands1,2 is the surface tension of pure FeSi
51) or ZnS (i 52) crystals. Sincep is typically small~of the
order of a few percent!, we will simplify Eq. ~14! by taking
the surface tension of pure ZnS:

s>s2 . ~15!

The surface tension is almost a constant that is indepen
of the crystallite radiusr, except for small values ofr, where
this dependence must be considered in order to avoid
unphysical divergence of the argument of the exponentia
Eq. ~13!. From thermodynamic arguments, Koenig@24# has
derived such an expression:

s~r !/s`[c~r !5expS 2E
0

d/r

2
11z1z2/3

112z~11z1z2/3!
dzD ,

~16!

wheres` is the surface tension of a flat crystal andd is a
small microscopic size characterizing the Gibbs surface. F
ther simplification of the integral can be performed by Pa´
approximants and one finds to a good approximation~with a
maximum relative error of 0.8%! @25#

c~r !>
r 21dr

r 213dr 1d2/a
, ~17!
e

-
-

e

n

nt
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e

where a50.3043. As expected,s(r→`)/s`51 and s(r
→0)/s`5ar /d. The latter relation ensures that the arg
ment of the exponential in Eq.~13! is finite for small r.
Equation~17! will be used in the numerical computations.

Reasonable boundary conditions for the concentra
fields are the following. We assume that there is no ma
flux of ZnSaq and FeSaq at the origin of the reacting reservoi
where the input brines are injected in the reservoir. We a
assume that, far from the origin of the reservoir, there are
concentration gradients, so that only the advective term c
tributes to the matter flux atx→`.

In summary, the dynamics of the system are describe
terms of three variablesB, C, andr. Their evolution equation
is given by Eq.~6! subject to the forcing reaction terms E
~4! and its analog forZ, together with Eqs.~7!, and ~10!
–~12!. OnceB andC are known, the local FeS compositio
in the solid phasep is computed through Eq.~9!.

B. Dimensionless formulation

In the sum of both Eqs.~6!, the term involvingp disap-
pears. It is thus convenient to introduce the sum of the c
centrations in solution,E:

E5B1C. ~18!

We scale the time variable by a time scalet, the crystallite
radius by a radius scaleR̄, all concentration variables by th
concentration scaleC1

` , and the position variable byL
5ADZt. We introduce the dimensionless parameters

v5Vt/L, k i5kit, di5Di /Dz ,

b5b2 /b1 , G5
4pR̄3Nr

3fC1
` , ~19!

and the capillary lengths nondimensionalized by the rad
scale

g i5
2s`y i

kBTR̄
, i 51,2. ~20!

For large crystallite curvature, the argument in the expon
tial of the equilibrium concentrations may be expanded,
that the radius dynamics occur over a small time scale, p
portional tog1 , say. It is then convenient to further scale t
concentrations by a factorg1 :

B̂5B/g1 , Ĉ5C/g1 , Ê5B̂1Ĉ. ~21!

Finally, we choose the time scale so as to simplify the rad
evolution equation,

t5
R̄

C1
`b1g1

, ~22!

and the radius scale so as to simplify the concentration eq
tion,

R̄5S 3fC1
`s`y1

2pNrkBT D 1/4

. ~23!
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Eliminating Ĉ in favor of Ê, the resulting scaled evolutio
equations are then given by

]B̂

]t
5d1

]2B̂

]x2 23pr2
]r

]t
2r 3

]p

]t
2v

]B̂

]x
1

k1

g1

F

C1
` ,

~24a!

]Ê

]t
5d2

]2Ê

]x2 1~d12d2!
]2B̂

]x223r 2
]r

]t
2v

]Ê

]x

1
k1

g1

F

C1
` 1

k2

g1

Z

C1
` , ~24b!

]r

]t
5~12b!@B̂2B̂0~r !#1b@Ê2Ê0~r !#, ~24c!

where the scaled equilibrium concentrations are

B̂0~r !5
1

g1
exp@g1c~r !/r #,

Ê0~r !5B̂0~r !1
D

g1
exp@g2c~r !/r #, ~25!

with c(r ) defined in Eq.~16! and

D5C2
`/C1

` . ~26!

The FeS composition in the crystallite is again

p5
KB̂

~K21!B̂1Ê
if r .0. ~27!

Finally, the boundary conditions take the form

d1

]B̂

]x
U

x50

2vB̂~0,t !50,

d2

]Ĉ

]x
U

x50

2vĈ~0,t !50,

]B̂

]x
U

x5`

5
]Ĉ

]x
U

x5`

5
]Ê

]x
U

x5`

50. ~28!

The second boundary condition written in terms ofÊ be-
comes

d2S ]Ê

]x
U

x50

2
]B̂

]x
U

x50
D 1v@B̂~0,t !2Ê~0,t !#50. ~29!

Typical values of the parameters are given in Table I. T
order of magnitude of the growth rate scaleb1C1

` is esti-
mated from typical Liesegang growth rate experiments@26#.
The flow velocity is estimated from Ref.@27#, the rate con-
stants from Ref.@20#, and the nucleus density for typica
geological systems from Ref.@15#. Typical fluid metal con-
centrations are taken from Refs.@13#, @20#. The equilibrium
concentrationC2

` for ZnSaq is found from the solubility data
e

of Ref. @20#, assuming apH of 5, a H2S activity equal to
0.01M , and a Cl2 activity of 1.0M . These values are typica
of hydrothermal ore-forming solutions@13,20#. Finally, the
equilibrium concentrationC1

` for FeSaq is estimated from the
fact that approximately 1000 times more zinc sulfide th
iron sulfides precipitates in the chemical reaction path m
eling of Ref.@13#. A solution density of 1 kg/l has been use
to convert ppm units to mole/cm3. With these values, one
finds that the radius scaleR̄'1025 cm ~or 33 times the
scaled capillary length!, the time scalet'33104 s, and the
length scaleL'0.1 cm, which is of the order of the ban
spacing.

III. LINEAR STABILITY ANALYSIS

In order to investigate further the properties of the d
namical system, it is useful to perform a linear stabil
analysis on its autonomous version, i.e., a preexisting p
cipitate without the reaction-forcing termsF(x,t) and
Z(x,t).

We first study the spatially homogeneous solutions of
system Eq.~24!. It is easily seen that Eqs.~24a! and ~24b!
lead to two conservation laws

Ê1r 35s0 , B̂1pr35s1 , ~30!

wheres0 ands1 are positive constants (s0.s1). Setting the
right-hand side of Eq.~24c! equal to 0 allows the determina
tion of the steady state solution (B̂s ,Ês ,r s):

~12b!@B̂s2B̂0~r s!#1b@Ês2Ê0~r s!#50. ~31!

Thus, by eliminatingB̂s and Ês with the help of Eqs.~30!
and ~25! in Eq. ~31!, one obtains a nonlinear function ofr s

whose roots~with r s<s0
1/3! give the steady state solutions o

the system. For instance, withb51, takingg15g2 and ex-
panding the exponentials, this nonlinear function ofr s is
simply

r s
31~11D!

c~r s!

r s
2s01~11D!/g150. ~32!

This function exhibits a minimum atr min . One therefore has
zero, one, or two steady states depending on the valu
s02(11D)/g1 ~Fig. 2!.

More generally, forbÞ1 ~but still with g15g2!, the
steady states are given by the intersections of the two foll
ing equivalentB̂s functions:

TABLE I. Estimate of the parameters used in this study.

b1C1
` 1028 cm/s s 200 erg/cm2

T 100 °C N 105 cm23

f 0.5 y 3.98310223 cm3

DZ 1026 cm2/s F0 1029 mole/cm3

DF 2.631026 cm2/s Z0 1028– 1027 mole/cm3

D1 ,D2 0.831026 cm2/s r 0.042 mole/cm3

V 331026 cm/s C1
` 1029 mole/cm3

k1 ,k2 1022– 103 s21 C2
` 10212 mole/cm3
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B̂s5
1

2~K21!
„s1~K21!2s02r s

3~K21!6$@s1~K21!2s0

2r s
3~K21!#214~K21!s1~s02r s

3!%1/2
…,

B̂s5
~11bD!

g1~12b!
exp@g1c~r s!/r s#2

b

12b
~s02r s

3!. ~33!

The first equation is obtained by eliminatingÊs andp from
Eqs. ~30! and ~27! and solving for the resulting quadrat
equation, whereas the second relation is obtained from
~31! and ~25!. Using this graphical method, we find that th
number of steady state solutions can vary from 0 to 4,
pending on the values of the parameters and of the cons
s0 ands1 .
he
or

t
in

e

s.

-
nts

If these steady state homogeneous solutions exist, t
stability to spatiotemporal perturbations can be inferred
linearizing the equations of motion about the steady s

(B̂s ,Ês ,r s). We thus assume

B̂~x,t !5B̂s1dB exp~vt1 ikx!, ~34!

wheredB is a small perturbation amplitude,k its wave vec-
tor, andv its time eigenvalue.dE andd r are similarly intro-
duced for the perturbation amplitudes corresponding to
variablesÊ and r. Expanding the exponentials in the radiu
growth law, the linearized system takes the form
S v1d1k21 ikv1KTsÊsr s
3v 2KTsB̂sr s

3v 3psr s
2v

k2~d12d2! v1d2k21 ikv 3r s
2v

b21 2b v2cs

~11bD!

r s
2 1

~11bD!

r s
c8
D S dB

dE

d r

D 50. ~35!
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Here, Ts[@(K21)B̂s1Ês#
22, c85dc/drs , cs5c(r s),

andps5p(B̂s ,Ês) is the composition at the steady state. T
eigenvalues are the solutions of a cubic equation of the f

05v31v2~Q11Q2k21 iQ3k!1v~Q4k21Q5k41 iQ6k

1 iQ7k3!1Q8k21Q9k41 iQ10k
3, ~36!

where the quantitiesQi are given in Appendix B and do no
depend onk. It is obvious that the eigenvalues correspond

FIG. 2. Graph illustrating the method for finding the homog
neous steady states of the system~24! without reaction-forcing
terms @F(x,t)5Z(x,t)50# for the special caseb51. Here, two
steady states are found at the intersections of the curver 31(1
1D)c/r and the horizontal lines02(11D)/g1 .
m

g

to homogeneous perturbations (k50) are v15v250 and
v352Q1 . The doubly degenerate zero eigenvalue cor
sponds to the two conservation laws of Eq.~30!. We also see
that, if Q1,0(.0), the steady state solution is unstab
~stable! with respect to homogeneous perturbations. For
stance, in the example of Fig. 2 withb51, one finds that the
steady states, defined on the branch for which ther s is larger
than r min , are stable with respect to homogeneous pertur
tions, whereas the ones defined on the other branch are
stable.

The stability of the steady state to general inhomogene
perturbations can also be studied. It turns out that in all
vestigated cases, the dispersion relation Re~v!, as a function
of the wave vector, has one of the forms shown in Fig. 3
is easy to show that two eigenvalue branches are stable
largek but the other branch saturates at a finite positive va
v` . Indeed, for largek, an asymptotic constant solution o
Eq. ~36! is

v`>2
Q9

Q5
5

~11bD!

r s
2 ~cs2r sc8!. ~37!

By using the exact expression Eq.~16! for cs , it is then seen
that v` is positive. For the cases where the steady stat
unstable atk50, it is easy to show thatv`.2Q1 so that the
dispersion curve has its maximum at largek.

The form of the dispersion relation is similar to the o
found in other periodic precipitation problems based
CGM @17#. We can then conclude that~i! the system is in-
trinsically unstable to small perturbations and~ii ! no length
scale is selected, at least at this linear level of descript
Thus, the system has the potential to generate com
spatio-temporal patterns.

-
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IV. NUMERICAL RESULTS

A. Numerical method

In order to investigate the nature of the linearly unsta
solutions in an unforced homogeneous system as well a
the forced system, we devised a numerical scheme for s
ing Eqs.~24!, where]p/]t was eliminated with the help o
Eq. ~27!. We discretized the time and space variables usin
fixed time stepDt and a space stepDx with a spatial grid of
dimensionM. We used centered differences for the spa
derivatives and a semi-implicit scheme~Crank-Nicholson!,
which requires the evaluation of all terms at intermedi
half time steps. LetXn be the 3M -dimensional column vec

tor constructed with the variables (r ,B̂,Ê) evaluated at time
nDt. To deal with the nonlinearities, we adopted a nonite
tive forward projection method@28#. This scheme consists i
evaluatingXn11/2 at intermediate half time steps by the fo
lowing approximation applied only to the nonlinear terms

Xn11/2>Xn1
Dt

2

]Xn

]t
. ~38!

FIG. 3. Dispersion curves Re~v! as a function of the wave num
ber k computed from Eq.~36!. In ~a!, Q1.0 and the steady state
are stable to homogeneous (k50) perturbations. However, th
branchv1 is unstable to inhomogeneous perturbations. In~b!, Q1

,0 and the branchv3 is unstable to all perturbations.
e
in

lv-

a

l

e

-

We thus obtained a discretized version of Eqs.~24! and their
boundary conditions, which takes the form of the followin
matrix equation:

A~Xn!•Xn115B~Xn!. ~39!

Here,B(Xn) is a 3M -dimensional column vector andA(Xn)
is a 3M33M matrix. B andA depend only on previously
known X. Moreover,A can always be arranged in the form

A5S T 0

0 1D , ~40!

where1 is an M3M identity matrix andT is a 2M32M
bi-tridiagonal matrix.T corresponds to the two diffusion
equations~24a! and ~24b!. The numerical solution was thu
obtained by straightforward successive inversions of
tridiagonal matrices@29# starting from known initial condi-
tions. The scheme was stable and convergent for the rang
parameters considered.

B. Coarsening in an initially homogeneous sol

In order to verify the linear stability analysis of Sec. II
we first considered the case where the forcing reaction te
were turned off (F05Z050) and the initial condition was
chosen to be homogeneous except for a local perturba
Specifically, the initial concentrations were constant
space, whereas the initial radius was constant everywhere
at the origin. Physically, this initial value would result from
the prenucleation phase of the precipitation, the dynamic
which is outside the scope of Eqs.~24!.

Figure 4 illustrates the numerical solution obtained w

FIG. 4. Time evolution of the crystallite radius spatial depe
dence in the absence of reaction-forcing terms and for an initi
uniform system. The initial dimensionless radius~dashed line! was
r (x,0)52.5 except at the origin wherer (0,0)52.0. The parameters
were chosen asb51, K51, d15d250.8, v50.9, D51023, g1

5g250.03, andd5g1/2. The initial dimensionless concentration

were Ê(x,0)533.367 andB̂(x,0)533.333, corresponding to di
mensionalized initial concentrationsB(x,0)5C1

` and C(x,0)
5C2

` . For computational purposes, the time step wasDt
50.0001, the space step wasDx50.05, andM5200 spatial grid
points were considered.
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FIG. 5. Formation of bands for an initially uniform system but in presence of the reaction-forcing termsF(x,t) and Z(x,t). The
parameter values and initial conditions are the same as in Fig. 4 with, in addition,DF /DZ52.6, k15k25100, F0 /g1C1

`51, and
Z0 /g1C1

`510. The time evolution of the crystallite radius is illustrated fort536 ~a!, 108~b!, and 144~c!. ~d! illustrates the FeS compositio
as a function of space att5144. In the interband regions@wherer (x,t)50#, the composition is not defined.
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b51 and in a case for which Eq.~32! gives two homoge-
neous steady states~r s50.027 and 2.478 in this example!. In
Sec. III, we saw that the steady state with the largest radiu
stable to homogeneous perturbations@Fig. 3~a!#, whereas the
other one is unstable@Fig. 3~b!#. However, the former is
unstable to inhomogeneous perturbations. In Fig. 4, the c
tallite radius is plotted as a function of space for vario
times. The linear stability behavior is clearly illustrated
the figure: for small times, the crystallite radius stays at
value 2.478 for a significant spatial range. However, near
origin, the perturbation is unstable, and the radius decre
to zero. Eventually, the zero-radius solution dominates:
system dissolves completely.

Figures 5~a!–5~c! illustrate a typical case for which th
reaction-forcing terms are present. The initial conditions
the same as in Fig. 4. Here, the situation is more interest
as time evolves, the solution evolves toward a periodic s
cession of oscillations characterized by narrow peaks
which the radius is significantly different from zero. In th
example shown here, the pattern wavelength is 0.65 redu
units. We saw in Sec. III that the linear stability analysis d
is

s-
s

e
e
es
e

e
g:
c-
r

ed

not yield any length scale. Also, the forcing term interven
in a linear fashion in the equations of motion. Thus, t
observed pattern length scale is a strictly nonlinear mani
tation that results from the competition between the forc
terms~which favor precipitation! and the dissolution. Figure
5~d! shows the FeS composition profilep at a specific time
for the case discussed above. Since the radius is nonze
the precipitate, the iron compositionp(x,t) also exhibits a
band structure bounded by the regions where the radiu
zero @Eq. ~27!#. However, in the interband region, the Fe
composition is essentially constant in time and uniform
space.

Figure 6 illustrates a situation identical to Fig. 5, exce
that the initial radius is smaller. This choice corresponds
the case where no homogeneous steady state exists. He
band develops in the vicinity of the initial perturbation. A
time increases, the band becomes narrower and the m
mum radius increases. Further away from this band, the
tem dissolves. No oscillating pattern is observed in this ca
Thus, we have illustrated that the system can coarsen in
presence of forcing reaction terms, but its ability to exhi
banded patterns depends on the initial conditions.
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C. Coarsening of sphalerite

The uniformly constant initial radius case discussed ab
may not be representative of the conditions in which MV
sphalerites are expected to form. As mentioned in the In
duction, the mixing model assumes that MVT sphalerite
sults from the precipitation of two brines interacting in
brecciated host rock. In order to mimic the disorder inher
to this type of geometry, we rather assume that the radiu
the crystallites resulting from the prenucleation phase of
precipitation was random. Specifically, the initial radius w
chosen as

r ~x,0!5r 01j~x!, ~41!

where r 0 is its average value andj represent random fluc
tuations sampled at each grid site from a uniform distribut
over the range@r 02A/2,r 01A/2#. This constitutes the initia
condition for the growth and ripening processes of sphale
described by Eqs.~24!.

Figures 7~a! and 7~b! show plots of the iron composition
of the sphalerite aggregate as a function of space at
different times for a typical case in the presence of reac
terms. Near the origin, the composition is almost pure Z
But elsewhere we note the presence of complex compos
oscillations. Also, the interband regions where no precipit
is found ~r being null! are much thinner than in the case
Fig. 5. Of course, these oscillations have a random chara
but periodic spatial components also develop in time,
shown by the Fourier transform~power spectrum! in Fig.
7~c!. In this case, the signal has many well-defined peaks,
first three~excluding the zero-wave-number peak! being at
reduced wave numbers of about 1.25, 1.562, and 1.875 u
These correspond to dimensionalized wavelengths of 0
0.064, and 0.053 cm. It is interesting to note that the th
fifth, and sixth peaks can be derived from harmonic com
nations of the first two: (1.56221.25)11.562'1.875,

FIG. 6. Evolution of the crystallite radius for an initially un
form system in presence of reaction-forcing terms, but for a c
where no homogeneous steady state exists. The parameter v
and initial conditions are as in Fig. 5, exceptr (x,0)51.0, r (0,0)
50.9. The dashed line gives the radius att52, whereas the con
tinuous line corresponds tot54.
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FIG. 7. Formation of compositional bands in presence
reaction-forcing terms with initially random crystallite radius@Eq.
~41!#, with r 05A510. The parameter values and the other init
conditions are as in Fig. 5, except thatK5631025. ~a! and ~b!
show the FeS composition profile at dimensionless timest520 and
40, respectively.~c! gives the power spectrumS of the Fourier
transform of the last 128 data points of the profile of~a! in terms of
the reduced wave numberk/2p. The zero-wave-number peak lie
outside the range of the graph. For the purpose of computing
Fourier transform, the composition profile was linearly interpola
in the thin regions where the radius vanishes.
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1.56211.2552.812, and 1.87511.2553.125. This supports
the view that the spectrum results from nonlinear interacti
between the modes. Also, the composition varies betw
about 3 and 6 mol % FeS. These features are qualitati
consistent with the characteristics of observed MVT ban
Finally, as time increases, the composition instability fro
moves outward. Eventually, the composition evolves tow
pure ZnS.

Similar banding patterns are also obtained for other val
of K and b, as long asb is not too large (b,10) andK is
small enough (K,1024). In general, decreasing the value
K for b fixed at 1 decreases the composition fluctuations
well as its average value. For fixedK andb, banded patterns
were generated for all initial radius random amplitudesA and
the power spectrum peaks were at the same wave-num
values as above. However, the time necessary to achie
banded pattern was larger for a larger amplitudeA. This can
be explained in terms of the inverse of the saturation eig
modeT`[1/v` , with v` defined in Eq.~37!. The quantity
T` gives the time scale over which a homogeneously sta
steady state loses its stability to inhomogeneous pertu
tions. For large initial radius, the quantitys0 , defined in Eq.
~30!, is large. But the largers0 , the larger the steady stat
radius @Eq. ~32!#, which yields a largerT` , in agreement
with the numerical findings.

V. CONCLUSION

In this paper, we have proposed an application of
competitive growth theory of precipitation that models t
formation of banded patterns in MVT sphalerite. Using ge
logically relevant values of the known parameters, the
merical simulations show the existence of spontaneous b
formation in the crystallite radius spatial distribution in
chemically forced system. In order to generate banded
terns in the FeS composition, random initial conditions in
crystallite radius were necessary. The composition patte
generated have dominant wavelengths that are consi
with the order of magnitude of the band spacing observe
natural samples. The model helps clarify the circumstan
in which MVT sphalerite ore is formed and is consistent w
the mixing of two different brines interacting in a host roc

In our model, only ripening, growth, and chemical rea
tions are considered. As is typical of postnucleation mod
interband regions with no precipitate (r 50) often develop.
However, our approach neglects nucleation processes~ex-
cept implicitly in defining the initial conditions!. A more
realistic model should include nucleation, growth, and rip
ing processes in a unifying way. Such a theory has b
proposed for the periodic precipitation of a single compon
in Ref. @25# and could be extended for the MVT case.

A basic assumption of our model is that the FeS com
sition is only related to the local solution concentration e
vironment@Eq. ~27!#. This assumption introduces a phenom
enological parameter, the ratio of the partitioning coefficie
K @Eq. ~9!#. Although this is a reasonable hypothesis, a m
realistic approach could relate the crystallite composition
the relative growth or dissolution velocities of the ZnS a
FeS species. This is currently under investigation.
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APPENDIX A: ACCRETION VELOCITIES

For simplicity, we assume that the crystallite grow
through a normal process~see, e.g.,@22#! and that the kinet-
ics is interface controlled~diffusion-controlled growth could
be considered as well!. The frequency of attachment of Fe
units onto the surface of the crystallite is an activated proc
and can be written as

v15nBy1e2Du1 /kBT, ~A1!

wheren is a frequency of vibration of the surface,y1 is the
molecular volume of FeS in the solid phase, andDU1 is the
energy barrier associated with the transfer of one FeS
from the solution to the crystallite. The productBy1 is es-
sentially the probability of finding a FeS unit in solution
the vicinity of the attachment site. The detachment freque
is

v25n~12By12Cy2!e2~DU11Dh1!/kBT, ~A2!

whereDh1 is the molecular enthalpy of transition andy2 is
the molecular volume of ZnS in the solid phase. The fac
(12By12Cy2) is the probability that the space around t
detachment site is free of solute particles.

At equilibrium, both frequencies are equal and

e2Dh1 /kBT5
C1

0y1

12C1
0y12C2

0y2
, ~A3!

whereCi
0 are the concentrations of FeS (i 51) and ZnS (i

52) in equilibrium with the crystallite. Lettingl 1 be the
typical size of the FeS molecule andP be the probability of
finding a kink site on the surface of the crystallite, the n
accretion rate~m/s! of FeS is then

V15 l 1P~v12v2!5
n l 1P

C1
0 e2~DU11Dh1!/kBT

3S B2C1
02B(

i 51

2

Ci
0y i1C1

0~By11Cy2!D . ~A4!

For dilute solutions, we can neglect the last three terms in
sum in the right-hand side and finally obtain Eq.~10!:

V15b1~B2C1
0!, ~A5!

where

b15
n l 1P

C1
0 e2~DU11Dh1!/kBT ~A6!
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is the kinetic coefficient, considered here as a phenome
logical parameter. A similar expression is obtained for
accretion of ZnS@Eq. ~11!#.

We can easily relate the growth of the crystallite to t
accretion rates. The volume of the crystallite is

4p

3
r 35(

i 51

2

y iNi
s , ~A7!

whereNi
s is the number of molecules of FeS (i 51) and ZnS

( i 52) in the crystallite. The time derivative of Eq.~A7!
gives

4pr 2
]r

]t
5(

i 51

2

y i

]Ni
s

]t
. ~A8!

But

]Ni
s

]t
5

Vi4pr 2

y i
. ~A9!

Therefore

]r

]t
5(

i 51

2

Vi ~A10!

which is Eq.~12!.

APPENDIX B: COEFFICIENTS Qi

For completeness, we write the detailed expressions
the quantitiesQi appearing in Eq.~36!:

Q15L21S 2
c̃

r s
2 L13brs

2~12ps!13psr s
213psr s

2

13TsKr s
5~B̂s1bĈs!D ,
z,
.
ct

d

o-
e

or

Q25L21@d21KTsr s
3~d1B̂s1d2Ĉs!#,

Q35L21v~21KÊsTsr s
3!,

Q45L21S 2~d11d2!
c̃

r s
22KTsc̃r s~d1B̂s1d2Ĉs!2v2

13bd1~12ps!r s
213d2psr s

2D ,

Q55
d1d2

L
,

Q65L21vS 22
c̃

r s
22KÊsTsc̃r s13brs

213psr s
2~12b!D ,

Q75
v
L

~d11d2!,

Q85
c̃v2

Lr s
2 ,

Q952
d1d2c̃

Lr s
2 ,

Q1052~d11d2!
c̃v

Lr s
2 , ~B1!

where Ts5@(K21)B̂s1Ês#
22, L511KÊsTsr s

3, c̃5(cs

2r sc8)(11bD), and Ĉs5Ês2B̂s is the steady state valu
of the ZnS dimensionless concentration.
.
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