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Origin of banded patterns in natural sphalerite
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Mississippi Valley type(MVT) sphalerite is a zinc ore mineréinc sulfide found in many sedimentary
basins around the world. Its texture is described as a polycrystalline aggregate which results from the precipi-
tation of metal-rich brines in a carbonate host rock. Typically, it exhibits a spatial pattern characterized by an
alternation of colored bands with a length scale on the order of 0.1 mm. In our samples, the color of the bands
correlates with the local iron composition. In order to understand the origin of banded patterns in MVT
sphalerite, we propose here an extension of the competitive growth mechanism often used to model periodic
precipitation patterns. In our model, precipitation from interacting brines, growth and dissolution of crystallite
radius, and ripening are taken into account. As in all postnucleation models, the nucleation process is ne-
glected. It is shown that our model may indeed generate patterns that are qualitatively compatible with the
observed ones. This constitutes an example of self-organization in a geochemical system.

PACS numbegps): 81.10.Aj, 05.45-a, 91.65.Rg, 47.54r

I. INTRODUCTION (see, e.g.[6,7]), and more generally from a combination of
both. The goal of this paper is to propose a phenomenologi-

.lt has been known for a long time t_hat al natur_a_lly groWN .o model for the formation of bands in MVT sphalerite.
minerals do not have a uniform chemical composition. Many . . . .
Bands in MVT sphalerite are characterized by a series of

of them exhibit complex growth patterns, such as oscillatory . :
. : . .~ “alternating zones of white, yellow, brown, orange, or black
zoning. In oscillatory-zoned single crystals, the chemlcala

- . 1Jayers with length scales on the order of 0.1-1 mm. In con-
composition varies more or less regularly from the core o

) L ) trast to oscillatory zoning in a single mineral, the bands re-
the mineral to its rim. The length scales over which the pat- ; .

sults from the aggregation of many crystallites. The long
tern occurs range from tens of nanometers to several tens g

. axes of these crystallites are oriented in a direction normal to
micrometers. Perhaps the best known example of such co

i i . ; "he bandind8,9]. Previous work 9] has found that the color
positional pattern is plagioclase feldspar, a mineral com- , . i .

L . . of the bands correlates with the iron content: the higher the
monly found in igneous rockgl]. In fact, oscillatory zoning

has been observed in all classes of minefajsand in vari- ratio of Fe to (ZnFe), the darker the band. Analyses of

. . sampleq 9] originating from Pine Point, Northwest Territo-
ous environments such as magmatic melts and aqueous so- g . .
lutions. ries (Canady determined that the iron and zinc contents

. 0 ;
Another type of oscillatory growth pattern results in the vary, respectively, from 1.9 and 64.2 wt% for light bands, to

6.0 and 61.2 wt % for dark bands. These numbers correspond

formation of bands of different colors, such as those ob_—,[o a molar fraction of FeS to (FeZnS) varying from 3%

served !n agates. Such a color bandi.ng.is _commonly found iRy light bands to 10% for dark bands.
sphalerite (ZnS) of the so-called Mississippi Valley type Two categories of descriptive models have been proposed
(MVT) variety (Fig. 1). This mineral is found in sedimentary (5 explain the general conditions in which MVT deposition
basins all over the world and constitutes an economicallyyccyrs. In the first clasénon mixing” models) [10,11], a
important source of zinc. It is typified by the deposits of thejow-pH brine transports the metals and reduced sulfur to the
Tri-State aredTennessee, Missouri, Arkangas the United  deposition site. Precipitation may then be caused by sudden
States. MVT sphalerite precipitates from low-temperaturechanges in the environmefthanges irpH, temperature, or
(50-100°Q hydrothermal fluids within a carbonate host dilution). In the second class of modgimixing” ), a metal-
rock. The precipitation occurs in brecci@oarse-grained bearing brine is transported to the deposition site and reacts
rock with angular fragments solution channels, or other with a H,S-rich brine[11-13, resulting in a precipitation
voids at shallow depths. event that is possibly far from equilibrium. In general, a con-
Because of the geological implications, it is important tosideration of geological arguments and chemical reaction
obtain as much information as possible on the formation conpath modeling seem to favor the second class of mid!
ditions of these oscillatory-zoned systems. Concurrently withlhe pattern-formation model described in this paper is de-
experimental synthesi¢see, e.g.,[3]), modeling of the fined in the framework of mixing models.
growth processes allows an understanding of these condi- We will base our model of banding pattern dynamics in
tions. Realistic models of oscillatory zoning must take intosphalerite on the concept of Liesegang ring formation. In a
consideration the various nonlinear feedbacks that couple thgpical Liesegang experimeft4], a salt solutiorA reacts in
dynamical variablegsee, e.g.[4]). The patterns may result an aqueous gel with another sBland forms a produdt .
from deterministid 2] or stochasti¢5] changes in the exter- Under certain conditions, this product precipitates and forms
nal parameters, or from self-organizing internal processea series of rings or bands;:
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duced by diffusion, which increases the crystallite size fur-
ther. But as the crystallite radius increases, the crystallites
adjacent to the initial perturbation will dissolve through rip-
ening, thus resulting in an increase of the equilibrium con-
centration in the zone close to the perturbation. This in turn
causes a net mass flux away from that zone, which induces
growth of the crystallite further away. The cycle can then be
repeated further along the system. This mechanism has there-
fore the potential to generate banding patterns.

In this paper, we generalize the model of Liesegang ring
formation to the coprecipitation of a binary solid solution
constituted by two compound&eS and Zng For simplic-
ity, we describe the precipitation dynamics in the framework
of postnucleation models. A version of the CGM that can be
applied to two-precipitate systems has already been proposed
in Ref. [19]. In that version, however, the two precipitates
form separate crystallites, each of well-defined composition.
Our model allows for mixing of the two species in the pre-
cipitate. It is not the goal of this study to systematically
investigate the effects of varying the parameters, but rather to
show that realistic banding patterns may be generated by a
simple mixing model.

The paper is organized as follows. In Sec. Il, the basic
equations defining the growth model are introduced. In order
to relate the composition of iron in the crystallite to the con-
centrations in the solution, we introduce a phenomenological
partitioning coefficient in the standard way. A dimensionless
formulation is then presented. In Sec. lll, we present a linear
stability analysis on the autonomous version of the model. It
is seen that, in some conditions, the system is intrinsically
FIG. 1. Microphotograph in transmitted light of a thin section of \,nstaple to inhomogeneous perturbations and that no charac-

MVT, sphalerite showing banding, characterized by an altematione ific jength scale can be defined at the linear level of de-
of dark and light zones. The concentric bands form crystallite ag-

! scription. In Sec. IV, we briefly describe the numerical
gregates that emanate from centers of growth. The black filaments . . . .
are branching galen@b$ crystals, a mineral often associated with me.thod and pres.ent th? re.SLI'|t.S.fOI’ two situations: one In
sphalerite. The sample originates from the Polaris mine, Northwesf/hich the crystallites radius is initially constaexcept for a
Territories(Canada The vertical bar in the upper right corner cor- 10cal perturbationand one in which it is random. Conclud-
responds to 1 mm. ing statements are presented in Sec. V. Two appendices com-

plete the presentation.

A+B—C,q—Cs.

. . . Il. MODEL
This type of pattern formation is relevant to many geological

systemg4,15|. . . .
yTwo classes of models are usually invoked to model the We reduce_ the model to one spatial dlmgnglon chosen
formation of Liesegang bands. In prenucleation mofe, along a dlrgctlon no_rmallto a typical band. This is expected
the feedback mechanism between nucleation kinetics of prd® P€ & valid approximation in the common cases where the
cipitate particles and diffusional transport of the product in"adil of curvature of the bands are large compared to the
solution generates a regular banding pattern, which typically?and thickness.
obeys simple scaling lawgL7]. In postnucleation models, In the context of mixing models, we assume that an influx
such as the competitive growth mod€lGM) [18], one as-  Of (Fe-Zn-rich brine flows into a reservoitthe porous host
sumes that the precipitate nucleation phase is terminated amigck) and reacts locally with a }$-rich brine to produce
that the density of nuclei is constant. A feedback betweerron-bearing sphalerite in the form of a crystallite aggregate.
precipitate growth, diffusion of the product in solution, and We choose the origin of the spatial coordinatat the initial
surface tension effectgripening then produces complex reaction front where both brines are mixed. The reservoir is
banding patterns. Consider, for example, a single-componentefined forx>0. For example, referring to Fig. 1, the brine
Liesegang experiment in an initially homogeneous systemcould be injected from a direction out of the plane of the
Assume the existence of a small localized increase in crysfigure in the clear area near the center of the banded aggre-
tallite radius. From the Gibbs-Thomson relation, this genergate. In this case, thg axis could correspond to a radial
ates a local decrease in the equilibrium concentration in thdirection normal to the bands in the plane of the figure. The
solution. A net mass transport toward the perturbation is insimplest reaction scheme is
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kq A similar expression foiZ(x,t) is obtained by substituting
FE" +H,S —— Fe§qt+2H", Z, for Fq,k, for k;, andD; for Dg.
We now model the precipitation dynamics. In the spirit of
ko the CGM, we assume that the crystallites are approximately
ZnCl+HyS ——— Zn§,+2H+2CI, spherical with an effective radiugx,t) and locally mono-
disperse, so that is a function of the crystallite positiorn
MZnSyqt+ NFeSg— (ZnnFe,, Snin), (1) and of timet. Let B(x,t) and C(x,t) denote the concentra-

here k dk ; q d the thi dtion (moles per fluid volumeof FeS and ZnS in solution,
wherek, andk, are forward rate constants and the { Irc respectively,D, , the respective diffusion coefficients, and

reaction describes the coprecipitation of metal sulfide speci : L o
. . . the respective precipitation ratésoles precipitated per
1,2
as crystallites. Following Ref20], we assume that the Zn is eunit time per unit rock volume Then

transported in the first brine as a chloride complex. At th

low temperatures considered, a similar complexing of iron is JB J°B JB
unlikely [20]. ¢ = ¢D1 7~ dV—— TkipF—Uy,
A. Basic equations aC 9°C aC
We choose the origin of the spatial coordinatat the ¢ 5t = Pagz— PV thedZ U2, ©

initial reaction front where both brines are mixed. The reser- ) ) o )
voir is defined forx>0. LetZ(x,t) andF(x,t) be the zncj  In the postnucleation regime, the precipitation rates are given
and Fé" concentration in the solutiofmoles per fluid vol- by

ume, respectively. We introduce the porosi#yof the me- g [ dm

dium, which is defined as the fraction of the rock volume U1=—<—er3p),

occupied by fluid-filled pores. We assume that the changes in at\ 3

the medium porosity due to the precipitation or dissolution of

sphalerite are negligible. We also defivieas the velocity of U :i (4_77 Nr3(1— p)) @

the advecting fluidassumed constantandD; ¢ as the dif- 2=t 3P '

fusion coefficients of ZnGland Fe, respectively. Withde-

noting time, the rate equations férandZ are Here, p is the average solid molar density,(assumed con-
stan} is the nuclei densityi.e., the number of precipitated

JdF 9°F d nuclei per unit rock volume andp(x,t) is the composition

‘f’ﬁ = d’DFW_ ¢V5_ kigF, (mole fraction of FeS in the sphalerite crystallite aggregate.
It is this compositionp that correlates with the observed

9z 927 9 band color and is the main variable of interest. It is possible
‘ﬁﬁ = ¢DZW_ oV e kipZ. (2)  to relatep to the other dynamical variables by assuming that
the mole number of each component precipitated in the ag-
OE|regate is proportional to its accretion velocit,7,21].

owever, since this relation breaks down close to equilib-
rium when the growth velocities may vanish, we propose

This set of equations is linear and can be explicitly solve
with appropriate boundary and initial conditions. We use

F(Ot)=Fy, Z(0t)=Z,, instead a simple relation betweprand the concentration of
the components in solution. We introduce the partitioning
F(o,t)=2Z(%,t)=0, coefficientsK, andK, by the standard definition:

s : . .
Here,Fo andZ,, are the corresponding concentrations in the?Nereé ny is the concentration of FeS£1) and ZnS {

input brine. The solution of E¢2) then reads =2) in the solid aggregate at positiarand timet. As long
as a precipitate is formeg.e., r >0), the compositiorp is

F B xV 1-n |+ 1 xV
F, P op, (17N |+ e 55
orf V)\\/t/DF+ X F{ XV

er —exp — 5

2 2\Dgt 2D¢

exp(%) p=n%/(nS+n3)=KB/(KB+C), 9
F

where K=K, /K, is treated as a phenomenological coeffi-
cient. Physically, Eq(9) indicates that the local composition
of FeS in the crystallite is proportional to the probability of
finding FeS in solution at that position.

VAU/D- X Assuming interface-controlled kinetics, the accretion ve-
X erf > , (4)  locity of FeS into the solid aggregaté; , may be written for
2Dt a dilute solution agsee Appendix A
where Vi=B4[B-Ci(N)]. (10

14 4k, D\ M 5) Here B, is a microscopic kinetic coefficient alﬁbﬁ(r) is the
v? ' concentration of FeS in solution at equilibrium with a crys-
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tallite of radiusr [22]. A similar expression can be written where a«=0.3043. As expectedy(r—=)/c”=1 and o (r
for the accretion velocity/, of ZnS by introducing the ki- —0)/c”=ar/5. The latter relation ensures that the argu-
netic coefficientB, and the equilibrium concentration of ment of the exponential in Eq13) is finite for smallr.
ZnS,Cg(r): Equation(17) will be used in the numerical computations.
Reasonable boundary conditions for the concentration
V2=,82[C—Cg(r)]. (12)  fields are the following. We assume that there is no matter
flux of ZnS,;and Feg at the origin of the reacting reservoir,
The overall growth of the crystallite can be expressed as the/here the input brines are injected in the reservoir. We also

sum of the accretion velocitigsee Appendix A assume that, far from the origin of the reservoir, there are no
concentration gradients, so that only the advective term con-

5_r_v TV 12 tributes to the matter flux at—os.
ot 1 In summary, the dynamics of the system are described in

terms of three variableB, C, andr. Their evolution equation
Finally, the crystallite radius dependence of the equilib-is given by Eq.(6) subject to the forcing reaction terms Eq.
rium concentrations is found from the Gibbs-Thomson rela{4) and its analog foiZ, together with Eqs(7), and (10)
tion: —(12). OnceB and C are known, the local FeS composition

in the solid phase is computed through Ed9).
0 % 20’(r)l}i .
CP=C ex . i=12, (13

kgTr

B. Dimensionless formulation

In the sum of both Eqs6), the term involvingp disap-
pears. It is thus convenient to introduce the sum of the con-
centrations in solutionk:

whereC;” is the equilibrium concentration of Fe$=1) or
ZnS (i=2) in the solution in contact with a flat crystallite,
is the molecular volume of FeS=£€1) or ZnS (=2) in the
precipitate,T is temperaturekg is Boltzmann’s constant, and E=B+C. (18)
a(r) is the effective surface tension between the crystallite

and the solution. Note that to a good approximatigeev,  We scale the time variable by a time scalehe crystallite
=uv,. In principle, the effective surface tension depends orradius by a radius scaR, all concentration variables by the
the compositionp of the crystal. Application of Butler's concentration scaleC;, and the position variable by

equa_ltion[23] to a binary system leads to the following ap- — \/D_zT We introduce the dimensionless parameters
proximate expression:

U:V’T/L, Ki:ki’T, di:Di/Dz,
exploalkgT)=pexpoalkgT)+(1—p)exporalkgT),
14) 47R3N
( b=pylB1, G=— ",
where a is the area of the molecular unit building up the 3¢C,

crystallite ando , is the surface tension of pure Fe§ (
=1) or ZnS (=2) crystals. Since is typically small(of the

(19

and the capillary lengths nondimensionalized by the radius

order of a few percepntwe will simplify Eq. (14) by taking cale
the surface tension of pure ZnS: "
20V g, (20)
‘y. = —, | = L.
o=a,. (15 " keTR

The surface tension is almost a constant that is independepbr large crystallite curvature, the argument in the exponen-
of the crystallite radius, except for small values af where  tjal of the equilibrium concentrations may be expanded, so
this dependence must be considered in order to avoid aghat the radius dynamics occur over a small time scale, pro-

unphysical divergence of the argument of the exponential ihortional toy, , say. It is then convenient to further scale the
Eqg. (13) From thermodynamlc arguments, KoelﬁR}l] has concentrations by a factO’rl:

derived such an expression:
B=B/y;, C=Cly,, E=B+C. (21)

. alr 1+2z+2%3
o(r)lo”= z,/;(r)zexp( - fo 277 22(1+ 2+ 2213) dz|, Finally, we choose the time scale so as to simplify the radius
evolution equation,
(16)
where o™ is the surface tension of a flat crystal adds a R 29
small microscopic size characterizing the Gibbs surface. Fur- = CiB1y:’ (22)

ther simplification of the integral can be performed by Pade
approximants and one finds to a good approximatieith a  and the radius scale so as to simplify the concentration equa-
maximum relative error of 0.89425] tion,

r2+ 8r _ [3¢CTo”v, |\ M
( 1 1) (23)

W= 235 57 17 ~| 27NpkgT
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Eliminating C in favor of E, the resulting scaled evolution TABLE |. Estimate of the parameters used in this study.
equations are then given b
q g y B:1CY 10~ 8cm/s o 200 erg/cr
9B . 5B NN, 9B L F T 100°C N 10em® .
=0 opIrT——Ir"——v -+ — ==, [0 0.5 v 3.98x10 ““cl
ot Mgk 2Py gt oox
71 Gy (249 D, 1078 cni/s Fo 107 °mole/cn?
D¢ 2.6x10 % cné/s Zo 10 8-10 " mole/cn?
~ ~ ~ ~ — 6
JE JE 2B o ot D,.D, 0.8x 1_06 cnils P 0.0_4;2 mole/cr
—=d,—> +(d;—dy) ——3r>——v — v 3x10 ®cm/s Cy 10 °mole/cn?
g mox 2 gt = ox Kk ok,  102-1Fst C; 10 2molefent
K1 F Ko Z
+— =+t ==, (24b

of Ref. [20], assuming gH of 5, a H,S activity equal to

or 0.0IM, and a CT activity of 1.0M. These values are typical

—=(1-b)[B—By(r)]+b[E-Eq()], (249  of hydrothermal ore-forming solutioris3,20. Finally, the

at equilibrium concentratio€7 for FeSis estimated from the

fact that approximately 1000 times more zinc sulfide than

iron sulfides precipitates in the chemical reaction path mod-
. 1 eling of Ref.[13]. A solution density of 1 kg/l has been used
Bo(r)=—exd y,¢(r)/r], to convert ppm units to mole/cnWith these values, one

" finds that the radius scalB~10 °cm (or 33 times the
A A A scaled capillary length the time scaler~3x 10*s, and the
Eo(r)=Bg(r)+ —exd you(r)/r], (25 length scaleL~0.1cm, which is of the order of the band
"1 spacing.

where the scaled equilibrium concentrations are

with ¢ (r) defined in Eq(16) and
IIl. LINEAR STABILITY ANALYSIS

A=CJICT. 26
20 (26) In order to investigate further the properties of the dy-
The FeS composition in the crystallite is again namical system, it is useful to perform a linear stability
analysis on its autonomous version, i.e., a preexisting pre-
KB cipitate without the reaction-forcing term&(x,t) and
=——F if r>0. (27 Z(x,1).
(K=1)B+E We first study the spatially homogeneous solutions of the
system Eq.(24). It is easily seen that Eq$24a and (24b)
Finally, the boundary conditions take the form lead to two conservation laws
oB ~ F 3 = 3_
dl& —vB(01)=0, E+r°=sy, B+pri=s;, (30)
x=0 wheresy ands; are positive constants{>s,). Setting the
e right-hand side of Eq(24¢) equal to O allows the determina-
dy— —vC(01=0, tion of the steady state solutiol8{,Eq,r):
x=0
. . . (1—b)[Bs—Bo(rgd)]+b[Es—Eq(r9)]=0. (31
JB _5C _(9E L (28) [ S 0 s] [ s 0 s]
x|, . OX| o ox| __ Thus, by eliminatingB, and E5 with the help of Eqgs(30)

A and(25) in Eq. (31), one obtains a nonlinear function pf
The second boundary condition written in termstfbe-  whose rootgwith rs$sé/3) give the steady state solutions of

comes the system. For instance, with= 1, takingy,=vy, and ex-
R R panding the exponentials, this nonlinear functionrgfis
JE JB N . simply
dy| —| —-—— +v[B(0t)—E(0t)]=0. (29
ox X
- o 1+ 2o 1+ a)y=0 (32
. . . r -S =0.
Typical values of the parameters are given in Table |. The s+ ) (g o+ ( m

order of magnitude of the growth rate scgeC7 is esti-

mated from typ|ca| Liesegang growth rate experiméﬁ@_ This function exhibits a minimum aty,,- One therefore has
The flow velocity is estimated from Ref27], the rate con-  zero, one, or two steady states depending on the value of
stants from Ref[20], and the nucleus density for typical So—(1+A)/y: (Fig. 2).

geological systems from Ref15]. Typical fluid metal con- More generally, forb#1 (but still with y;=1y,), the
centrations are taken from Refd.3], [20]. The equilibrium  steady states are given by the intersections of the two follow-
concentratiorC; for ZnS,,is found from the solubility data ing equivalentB functions:
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1 5 If these steady state homogeneous solutions exist, their
Z(K—_l)(sl(K—1)—So—rs(K—1)i{[51(K—l)—50 stability to spatiotemporal perturbations can be inferred by

linearizing the equations of motion about the steady state
—r3K=1)P+4(K-1)s;(so— 1)}, (Bs,Es.rs). We thus assume

oo
“

é —wexq (l;(r )/r ]—L(S —r3) (33)
S” y.(1-Db) Yigile)isl™ 150 bs): é(x,t)zés-i- Og explwt +ikx), (34

The first equation is obtained by eliminatifig andp from

Egs. (30) and (27) and solving for the resulting quadratic , ) ) ,

equation, whereas the second relation is obtained from Eq¥/hereds is a small perturbation amplitudi,its wave vec-
(31) and(25). Using this graphical method, we find that the t0r, andw its time eigenvaluesg and &, are similarly intro-
number of steady state solutions can vary from 0 to 4, deduced for the perturbation amplitudes corresponding to the

pending on the values of the parameters and of the constantariablesE andr. Expanding the exponentials in the radius

Sp ands; . growth law, the linearized system takes the form
|
w+dK2+iko+KTES3w —KTBgiw 3pgri

d
k?(d;—d +dok2+ik 3r2 B

(h=da) o e s 3 | =o. (35
(1+bA) (1+bA) S
b—1 —-b w— s 2 + ; ' r

S S

Here, T=[(K—1)B.+E( 2, ¢/ =dyldrs, p=u(ry), 10 homogeneous perturbatione<0) are w;=w,=0 and

andps= p(BS,ES) is the composition at the steady state. The®3~ ;Ql' Jhe doubly deggnelrate chero e|gV?/nva|Iue corre-
eigenvalues are the solutions of a cubic equation of the formjPONds 1o the two conservation laws of E80). We also see
that, if Q;<0(>0), the steady state solution is unstable

0=+ 0?(Q;+Qk>+iQ3K) + w(Q,k?+ Qsk*+iQgk (stable with respect to homogeneous perturbations. For in-
a3 2 4, 3 stance, in the example of Fig. 2 with= 1, one finds that the
+1Q7k”) +Qgk”+ Qok™ +iQ k>, (36)  steady states, defined on the branch for whictr thie larger

where the quantitie®; are given in Appendix B and do not thanrmin, are stable with respect to homogeneous perturba-

depend ork. It is obvious that the eigenvalues correspondingti?”bsr whereas the ones defined on the other branch are un-
stable.

The stability of the steady state to general inhomogeneous
perturbations can also be studied. It turns out that in all in-
vestigated cases, the dispersion relation e as a function
of the wave vector, has one of the forms shown in Fig. 3. It
re+(1+8V /r is easy to show that two eigenvalue branches are stable for

\ largek but the other branch saturates at a finite positive value
., . Indeed, for largek, an asymptotic constant solution of
Eq. (36) is

Qo (1+bA)

s, (1+a)A, 0=, 2 WYY, (37

\\ By using the exact expression Hd6) for i, it is then seen
that w,, is positive. For the cases where the steady state is
unstable ak=0, it is easy to show thab..> — Q4 so that the
0 'T« . dispersion curve has its maximum at laige
The form of the dispersion relation is similar to the one
found in other periodic precipitation problems based on
FIG. 2. Graph illustrating the method for finding the homoge- CGM [17]. We can then conclude th& the system is in-

neous steady states of the systé?d) without reaction-forcing trinsically unstable to small perturbations afid no length
terms[F(x,t)=Z(x,t)=0] for the special casb=1. Here, two Scale is selected, at least at this linear level of description.

steady states are found at the intersections of the cufwg(l  Thus, the system has the potential to generate complex
+A)/r and the horizontal linesy— (1+A)/y,. spatio-temporal patterns.

min
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Re(w)

0 k

FIG. 3. Dispersion curves R@) as a function of the wave num-
ber k computed from Eq(36). In (a), Q;>0 and the steady states
are stable to homogeneou&={0) perturbations. However, the
branchw; is unstable to inhomogeneous perturbations(bin Q,
<0 and the branclw; is unstable to all perturbations.

IV. NUMERICAL RESULTS

A. Numerical method

In order to investigate the nature of the linearly unstable
solutions in an unforced homogeneous system as well as i
the forced system, we devised a numerical scheme for solv

ing Egs.(24), wheredp/dt was eliminated with the help of

Eq.(27). We discretized the time and space variables using ¢

fixed time stepAt and a space stefpx with a spatial grid of

We thus obtained a discretized version of E@¢l) and their
boundary conditions, which takes the form of the following
matrix equation:

A(XM) - XM I=B(X"). (39

Here,B(X") is a 3M-dimensional column vector ansl(X")
is a 3V X3M matrix. B andA depend only on previously
known X. Moreover,A can always be arranged in the form

T O
A:

0o 1)’ (40

wherel is an M XM identity matrix andT is a 2M X 2M
bi-tridiagonal matrix. T corresponds to the two diffusion
equations(24g and (24b). The numerical solution was thus
obtained by straightforward successive inversions of bi-
tridiagonal matrice$29] starting from known initial condi-
tions. The scheme was stable and convergent for the range of
parameters considered.

B. Coarsening in an initially homogeneous sol

In order to verify the linear stability analysis of Sec. Ill,
we first considered the case where the forcing reaction terms
were turned off Fg=Z3=0) and the initial condition was
chosen to be homogeneous except for a local perturbation.
Specifically, the initial concentrations were constant in
space, whereas the initial radius was constant everywhere but
at the origin. Physically, this initial value would result from
the prenucleation phase of the precipitation, the dynamics of
which is outside the scope of Eq24).

Figure 4 illustrates the numerical solution obtained with

3 T T T T

R I I I EEE—

05 T

0 i 1 1 1

dimensionM. We used centered differences for the spatial 0 2 4 6 8 10

derivatives and a semi-implicit schent€rank-Nicholso,

X

which requires the evaluation of all terms at intermediate FIG. 4. Time evolution of the crystallite radius spatial depen-

half time steps. LeK" be the 3vi-dimensional column vec-
tor constructed with the variables,B,E) evaluated at time

dence in the absence of reaction-forcing terms and for an initially
uniform system. The initial dimensionless radigsashed lingwas

nAt. To deal with the nonlinearities, we adopted a nonitera+ (x,0)=2.5 except at the origin wherg0,0)=2.0. The parameters

tive forward projection methof28]. This scheme consists in
evaluatingX"*¥2 at intermediate half time steps by the fol-
lowing approximation applied only to the nonlinear terms:

At oX"
n+1/2E n, .
X X 2 ot

(39)

were chosen ab=1, K=1, d;=d,=0.8,v=0.9, A=10"3, y,
=v,=0.03, ands= y,/2. The initial dimensionless concentrations
were E(x,0)=33.367 andB(x,0)=33.333, corresponding to di-
mensionalized initial concentration8(x,0)=C; and C(x,0)
=C5. For computational purposes, the time step wAS$
=0.0001, the space step wax=0.05, andM =200 spatial grid
points were considered.
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FIG. 5. Formation of bands for an initially uniform system but in presence of the reaction-forcing fgpaty and Z(x,t). The
parameter values and initial conditions are the same as in Fig. 4 with, in addRipf),=2.6, x;=k,=100, Fy/y,C7=1, and
Z,/y,C7=10. The time evolution of the crystallite radius is illustratedtfer36 (a), 108(b), and 144(c). (d) illustrates the FeS composition
as a function of space at144. In the interband regiorjsvherer (x,t)=0], the composition is not defined.

b=1 and in a case for which Eq32) gives two homoge- not yield any length scale. Also, the forcing term intervenes
neous steady statés,=0.027 and 2.478 in this examplén in a linear fashion in the equations of motion. Thus, the
Sec. lll, we saw that the steady state with the largest radius ighserved pattern length scale is a strictly nonlinear manifes-
stable to homogeneous perturbatipfigy. 3a)], whereas the tation that results from the competition between the forcing
other one is unstab|é|:ig_ S(b)] However, the former is termS(WhiCh favor preCIpItatIOhand the diSSOIUtior.].' Figure
unstable to inhomogeneous perturbations. In Fig. 4, the crys2(d) shows the FeS composition profiteat a specific time
tallite radius is plotted as a function of space for variousfor the case discussed above. Since the radius is nonzero in

times. The linear stability behavior is clearly illustrated by € Precipitate, the iron compositige(x,t) also exhibits a

the figure: for small times, the crystallite radius stays at thd?@nd étruczture E'ounded by tﬂe _regiobns ;vher_e thehradliuss is
value 2.478 for a significant spatial range. However, near théero[ g. (27)). However, in the interband region, the Fe

origin, the perturbation is unstable, and the radius decreasés:%;ncpeos'tlon Is essentially constant in time and uniform in

to zero. Eventually, the zero-radius solution dominates: the Figure 6 illustrates a situation identical to Fig. 5, except
system dissolves coimpletely. . . that the initial radius is smaller. This choice corresponds to

Flgures 5".")_5((:) ilustrate a typical case for wh!gh the the case where no homogeneous steady state exists. Here, a
reaction-forcing terms are present. The initial conditions arg,5,q develops in the vicinity of the initial perturbation. As
the same as in Fig. 4. Here, the situation is more interesting;me increases, the band becomes narrower and the maxi-
as time evolves, the solution evolves toward a periodic Sucmym radius increases. Further away from this band, the sys-
cession of oscillations characterized by narrow peaks fofem dissolves. No oscillating pattern is observed in this case.
which the radius is significantly different from zero. In the Thus, we have illustrated that the system can coarsen in the
example shown here, the pattern wavelength is 0.65 reducgstesence of forcing reaction terms, but its ability to exhibit
units. We saw in Sec. Ill that the linear stability analysis didbanded patterns depends on the initial conditions.
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(a)

X 0.08 T T T T

FIG. 6. Evolution of the crystallite radius for an initially uni-
form system in presence of reaction-forcing terms, but for a case
where no homogeneous steady state exists. The parameter value
and initial conditions are as in Fig. 5, excafix,0)=1.0, r(0,0)
=0.9. The dashed line gives the radiustat2, whereas the con-
tinuous line corresponds to=4. P 0.04

C. Coarsening of sphalerite

The uniformly constant initial radius case discussed above 0.02 | .
may not be representative of the conditions in which MVT
sphalerites are expected to form. As mentioned in the Intro-
duction, the mixing model assumes that MVT sphalerite re- 0 L v, . .
sults from the precipitation of two brines interacting in a 0 5
brecciated host rock. In order to mimic the disorder inherent x
to this type of geometry, we rather assume that the radius of
the crystallites resulting from the prenucleation phase of the
precipitation was random. Specifically, the initial radius was
chosen as

0.3 T T T T

(c)
r(x,0)=rq+ &(x), (41

wherer is its average value and represent random fluc-
tuations sampled at each grid site from a uniform distribution s
over the rang@ro— A/2r o+ A/2]. This constitutes the initial
condition for the growth and ripening processes of sphalerite o1 H i
described by Eqg24).

Figures Ta) and 1b) show plots of the iron composition
of the sphalerite aggregate as a function of space at two
different times for a typical case in the presence of reaction
terms. Near the origin, the composition is almost pure ZnS.
But elsewhere we note the presence of complex composition 0 2 4 6 8 10
oscillations. Also, the interband regions where no precipitate
is found (r being nul) are much thinner than in the case of
Fig. 5. Of course, these oscillations have a random character, FIG. 7. Formation of compositional bands in presence of
but periodic spatial components also develop in time, aseaction-forcing terms with initially random crystallite radiL&qg.
shown by the Fourier transforrfpower spectrumin Fig. (41)], with ro=A=10. The parameter values and the other initial
7(c). In this case, the signal has many well-defined peaks, theonditions are as in Fig. 5, except that=6x10">. (a) and (b)
first three (excluding the zero-wave-number pgdleing at  show the FeS composition profile at dimensionless titwe20 and
reduced wave numbers of about 1.25, 1.562, and 1.875 unit40, respectively.(c) gives the power spectrur8 of the Fourier
These correspond to dimensionalized wavelengths of 0.08ansform of the last 128 data points of the profilgafin terms of
0.064, and 0.053 cm. It is interesting to note that the thirdthe reduced wave numb&r27. The zero-wave-number peak lies
fifth, and sixth peaks can be derived from harmonic combi-OUtSide the range of the graph. For the purpose of computing the

nations of the first two: (1.5621.25)+1.562~1.875 Fourier transform, the composition profile was linearly interpolated
o ' ' " 7" in the thin regions where the radius vanishes.
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1.562+1.25=2.812, and 1.8751.25=3.125. This supports ACKNOWLEDGMENTS
the view that the spectrum results from nonlinear interactions This research was supported by a grant from the Natural

between the modes. Also, the composition varies b.etweegciences and Engineering Research Council of Canada. The
about 3 and 6 mol % FeS. These features are qualitatively i wishes to thank Brian Logan for reading the manu-
consistent with the characteristics of observed MVT bandSgcrint and Anthony Fowler for fruitful discussions and for
Finally, as time increases, the composition instability front reparing Fig. 1. Maurice Chacron is thanked for assistance
moves outward. Eventually, the composition evolves towargn the numerical computations.

pure ZnS.

Similar banding patterns are also obtained for other values
of K andb, as long a% is not too large <10) andK is
small enoughK<10~%). In general, decreasing the value of ~ For simplicity, we assume that the crystallite grows
K for b fixed at 1 decreases the composition fluctuations aghrough a normal processee, e.g.[22]) and that the kinet-
well as its average value. For fixédandb, banded patterns ics is interface controlleddiffusion-controlled growth could
were generated for all initial radius random amplitudeend ~ be considered as wgllThe frequency of attachment of FeS
the power spectrum peaks were at the same wave-numbBpits onto the surface of the crystallite is an activated process
values as above. However, the time necessary to achievedd can be written as
banded pattern was larger for a larger amplitdd&his can
be explained in terms of the inverse of the saturation eigen-
modeT..=1/w.., with w,, defined in Eq(37). The quantity . N .
T, gives the time scale over which a homogeneously stabl&"herev is a frequency of ylbrat|on .Of the surfaca, IS the
steady state loses its stability to inhomogeneous perturbé]jc’lewkJlr vglume of Fes N t_he solid phase, drid, is the .
. T . : . . energy barrier associated with the transfer of one FeS unit
tions. For large initial radius, the quantity, defined in Eq.

: from the solution to the crystallite. The produBv; is es-
(30).’ is large. But th_e Iargeso, the larger the steady state sentially the probability of finding a FeS unit in solution in
radius[Eq. (32)], which yields a largefT.., in agreement o icinity of the attachment site. The detachment frequency
with the numerical findings. is

APPENDIX A: ACCRETION VELOCITIES

w,=vBye Aur/keT (A1)

w_=v(1—Buv;— Cu,)e (AUrTah)/kgT (A2)
V. CONCLUSION
whereAh; is the molecular enthalpy of transition amgl is

In th_|§ paper, we have propos.ec_i an application of theihe molecular volume of ZnS in the solid phase. The factor
competitive growth theory of precipitation that models the(l—Bul—Cvz) is the probability that the space around the

formation of banded patterns in MVT sphalerite. Using 9€0-atachment site is free of solute particles,

Ioglgally relevant values of the known parameters, the nu- At equilibrium, both frequencies are equal and
merical simulations show the existence of spontaneous band

formation in the crystallite radius spatial distribution in a c%
chemically forced system. In order to generate banded pat- @~ Ahy/kgT = 11
terns in the FeS composition, random initial conditions in the
crystallite radius were necessary. The composition patterns 0 . ]
generated have dominant wavelengths that are consisteff’€r€Ci are the concentrations of Fe$<(1) and ZnS {
with the order of magnitude of the band spacing observed i 2) in equilibrium with the crystallite. Lettind, be the
natural samples. The model helps clarify the circumstancef/Pical size of the FeS molecule aftbe the probability of
in which MVT sphalerite ore is formed and is consistent with finding a kink site on the surface of the crystallite, the net
the mixing of two different brines interacting in a host rock. accretion ratém/s) of FeS is then

In our model, only ripening, growth, and chemical reac-
tions are considered. As is typical of postnucleation models, Vi=1,P(w, —o_)= vl P o (AUL+AN)kgT
interband regions with no precipitate=£0) often develop. e o
However, our approach neglects nucleation procegses
cept implicitly in defining the initial conditions A more
realistic model should include nucleation, growth, and ripen-
ing processes in a unifying way. Such a theory has been

proposed for the periodic precipitation of a single componengq; dijyte solutions, we can neglect the last three terms in the

— 0 A
L
1_C1U1_C2‘U2 ( 3)

2
X B—C‘}—B;l Co+CYBuv+Cuy) |. (Ad)

in Ref. [2_5] and coulld be extended fqr the MVT case. sum in the right-hand side and finally obtain E0):
A basic assumption of our model is that the FeS compo-
sition is only related to the local solution concentration en- V,=B,(B—C9) (A5)

vironment[Eq. (27)]. This assumption introduces a phenom-
enological parameter, the ratio of the partitioning coefficienthh ere
K [Eq. (9)]. Although this is a reasonable hypothesis, a more
realistic approach could relate the crystallite composition to =
the relative growth or dissolution velocities of the ZnS and ,31_—%

_ —(AU;+Ahy)/kgT
: - : T e T aTe (A6)
FeS species. This is currently under investigation. Ci
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is the kinetic coefficient, considered here as a phenomeno-
logical parameter. A similar expression is obtained for the
accretion of Zn§Eq. (11)]. - . 5

We can easily relate the growth of the crystallite to the Q3=A"1v(2+KEST4rQ),
accretion rates. The volume of the crystallite is

Q=AM+ KTgr3(dBe+d,Co)l,

2 B I - R .
4?77r3:2 UiNiSa (A7) Qs=A ! —(dy+dy) r_g_KTs‘zbrs(dlBs+dZCs)_Uz
i=1
whereN? is the number of molecules of FeS<(1) and ZnS +3bdy(1-pyri+ 3d2psr§) ,
(i=2) in the crystallite. The time derivative of E@GA7)
gives
did,
2 s [ —
ar JN: QS ’
2. _ SRl A
amr?— ;1 v (A8)
But _A-1 ﬁ'r/" ET 2 2
Qs=A""v —2r—2—KESTS¢rS+3brs+3psrs(1—b) ,
S
N} V4mr?
—= (A9)
ot Vi 1%
Q7:K(d1+d2),
Therefore
2 ~
ar l//vz
E‘; V, (A10) Q=772
which is Eq.(12). ~
__ Gy
APPENDIX B: COEFFICIENTS Q; o Ars’
For completeness, we write the detailed expressions for _
the quantitiesQ; appearing in Eq(36): P
a Qi app g in Eq(6 QlO:_(d1+d2)Py (B1)
~ S
_ 4
Q=AY — 5 A+3bri{(1—ps)+3psr+3psre N A
I's where Tg=[(K—1)Bs+Eg] %, A=1+KETgr:, &=(ts
—re')(1+bA), andC=E,—Bs is the steady state value
+3TKr3(Be+ bés)), of the ZnS dimensionless concentration.
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